
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

34 | P a g e
www.ijacsa.thesai.org

A Parallel and Concurrent Implementation of Lin-

Kernighan Heuristic (LKH-2) for Solving Traveling

Salesman Problem for Multi-Core Processors using

SPC
3
 Programming Model

Muhammad Ali Ismail

Assistant Professor

Dept. of Computer & Info. Sys. Engg.

NED University of Engg. & Tech.

Karachi, Pakistan

maismail@neduet.edu.pk

Dr. Shahid H. Mirza

Professor

Usman Institute of Engg. & Tech.

Karachi, Pakistan

sh_mirza@uit.edu.pk

Dr. Talat Altaf

Professor & Dean (ECE)

Faculty of Elect & Comp Engg.

NED University of Engg. & Tech

Karachi, Pakistan

deanece@neduet.edu.pk

Abstract— With the arrival of multi-cores, every processor has

now built-in parallel computational power and that can be fully

utilized only if the program in execution is written accordingly.

This study is a part of an on-going research for designing of a

new parallel programming model for multi-core processors. In

this paper we have presented a combined parallel and concurrent

implementation of Lin-Kernighan Heuristic (LKH-2) for Solving

Travelling Salesman Problem (TSP) using a newly developed

parallel programming model, SPC
3
 PM, for general purpose

multi-core processors. This implementation is found to be very

simple, highly efficient, scalable and less time consuming in

compare to the existing LKH-2 serial implementations in multi-

core processing environment. We have tested our parallel

implementation of LKH-2 with medium and large size TSP

instances of TSBLIB. And for all these tests our proposed

approach has shown much improved performance and
scalability.

Keywords- TSP; Parallel Heuristics; Multi-core processors, parallel

programming models.

I. INTRODUCTION

Multi-core processors are becoming common and they
have built-in parallel computational power and which can be
fully utilized only if the program in execution is written
accordingly. Most software today is grossly inefficient for
multi-core processors, as they are not written for the support of
parallelism or concurrency. Writing an efficient and scalable
parallel program is now much complex. Scalability embodies
the concept that a programmer should be able to get benefits in
performance as the number of processor cores increases.
Breaking up an application into a few tasks is not a long-term
solution. In order to make most of multi-core processors,
either, lots and lots of parallelism are actually needed for
efficient execution of a program on larger number of cores, or
secondly, make a program concurrently executable on multi-
cores [1, 2, 3].

The classical Travelling Salesman Problem (TSP) is one of
the most representative irregular problems in combinatorial
optimization. Despite its simple formulation, TSP is hard to

solve. The difficulty becomes apparent when one considers the
number of possible tours. For a symmetric problem with „n‟
cities there are (n-1)!/2 possible tours. If „n‟ is 20, there are
more than 1018 tours. For 7397-city problem in TSPLIB, there
will be more than 1025,000 possible tours. In comparison it may
be noted that the number of elementary particles in the
universe has been estimated to be „only‟ 1087[5].TSP has
diversified application areas because of its generalized nature.
TSP is being used to solve many major problems of nearly all
engineering disciplines, medicine and computational sciences.
[4, 6, 9].

 Lin-Kernighan heuristic (LKH) is an implementation of
local search optimization meta-heuristic [11, 12] for solving
TSP [5, 7, 9, 10]. This heuristic is generally considered to be
one of the most effective methods for generating optimal or
near-optimal solutions for the symmetric traveling salesman
problem. Computational experiments have shown that LKH is
highly effective. Even though the algorithm is approximate,
optimal solutions are produced with an impressively high
frequency. LKH has produced optimal solutions for all solved
problems including an 85,900-city instance in TSPLIB.
Furthermore, this algorithm has improved the best known
solutions for a series of large-scale instances with unknown
optima, like „World TSP‟ of 1,904,711-city instance. After the
original algorithm (LK), its two successive variants LKH-1
and LKH-2 have also been proposed with further
improvements in the original algorithm [7, 9, 13].

In this paper we have presented an efficient parallel and
concurrent implementation of Lin-Kernighan Heuristic (LKH-
2) for Solving Travelling Salesman Problem (TSP) using a
newly developed parallel programming model, SPC3 PM,
Serial, Parallel, and Concurrent Core to Core Programming
Model developed for multi-core processors. It is a serial-like
task-oriented multi-threaded parallel programming model for
multi-core processors that enables developers to easily write a
new parallel code or convert an existing code written for a
single processor. The programmer can scale a program for use

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

35 | P a g e
www.ijacsa.thesai.org

with specified number of cores. And ensure efficient task load
balancing among the cores [1].

The rest of the paper is organized as follows. In section II,
the TSP problem and related solutions are discussed. In
subsequent section III, the LKH-2 algorithm and its serial
execution are analyzed in order to make it parallel and suitable
for multi-core processors using SPC3 PM. Features and
programming with SPC3 PM are highlighted in section IV.
The parallel implementation of LKH-2 based on SPC3PM is
presented in section V. In section VI, the experimental setup
and results are discussed. Finally, conclusion and future work
are given in section VII.

II. TRAVELLING SALESMAN PROBLEM AND RELATED

SOLUTION

TSP is one of the most famous, irregular and classical
combinatorial optimization problems. It has been proven that
TSP is a member of the set of NP-complete problems. In TSP,
a salesman is considered who has to visit n cities, the TSP asks
for the shortest tour through all the cities such that no city is
visited twice and the salesman returns at the end of tour back
to the staring city.

Mathematically, let be a graph, where V is a set

of n nodes and E is set of arcs. Let [] be a cost matrix

associated with E, where represents the cost of going from

city i to city j. The problem is to find a
permutation) of the integers from 1 through n

that minimizes the quantity

. Using integer programming formulation, the

TSP can be defined as

 ∑

∑

Such that ∑ And ∑

 ∑i S ∑ xi jj S |S|-1, S

 And { }

Where if arc (i,j) is in the solution and 0 otherwise.

Properties of the cost matrix C are used to classify
problems.

 If cij = cji for all i and j, the problem is said to be

symmetric; otherwise, it is asymmetric.

 If the triangle inequality holds (cik cij + cjk for all i, j

and k), the problem is said to be metric.

 If cij are Euclidean distances between points in the

plane, the problem is said to be Euclidean. A

Euclidean problem can be both symmetric and metric.

In order to find the optimal solution for any TSP based
problem a number of solutions have been proposed, which can
be classified into four classes as Exact, Heuristic, Meta-
heuristic and hyper heuristics Algorithms.

A. Exact Algorithms

These algorithms are used when we want to obtain an
exact optimal solution. In this, every possible solution is
identified and compared for optimal solution. These
algorithms are suitable for a smaller number of inputs. Brute-
force method, Dynamic programming algorithm of Hell and
Karp, Branch-and-Bound and Branch-and-Cut algorithm are
some of the famous algorithms of this class [4, 5].

B. TSP Heuristics:

These heuristics are used when the problem size is large
enough, time is limited or the data of the instance is not exact.
In this class, instead of finding all possible solutions of a given
problem, a sub optimal solution is identified. TSP heuristic can
be roughly partitioned into two classes: „Constructive
heuristic‟ and „Improvement heuristic‟. Constructive heuristics
build a tour from scratch and stop when one solution is
produced. Improvement heuristics start from a tour normally
obtained using a construction heuristic and iteratively improve
it by changing some parts of it at each iteration. Improvement
heuristics are typically much faster than the exact algorithm
and often produce solutions very close to the optimal one.
Greedy Algorithms, Nearest Neighbor, Vertex Insertion,
Random Insertion, Cheapest Insertion, Saving Heuristics,
Christofides Heuristics, Krap-Steele Heuristics, and ejection-
chain method are the well known proposed heuristics
algorithm of this class [4, 5, 6].

C. Meta-Heuristics

These are intelligent heuristics algorithms having the
ability to find their way out of local optima. The Meta-
heuristic approaches are the combination of first two classes.
These Meta-heuristics contain implicit intelligent algorithms,
ability to find their way out of local optima and possibility of
numerous variants and hybrids. These heuristics are relatively
more challenging to parallelize. Due to these reasons meta-
heuristic approaches have drawn attention of many
researchers.

Many of the well-known meta-heuristics have been
proposed like Random optimization, Local search
optimization, Greedy algorithm and hill-climbing, Best-first
search, Genetic algorithms, Simulated annealing, Tabu search,
Ant colony optimization, Particle swarm optimization,
Gravitational search algorithm, Stochastic diffusion search,
Harmony search, Variable neighborhood search, Glowworm
swarm optimization (GSO) and Artificial Bee colony
algorithm. However because of TSP nature, all these meta-
heuristics cannot be used for solving TSP. Specific meta-
heuristics used for solving TSP include Simulated Annealing,
Genetic Algorithms, Neural Networks, Tabu Search, Ant
colony optimization, and Local search optimization [4, 5, 6].

D. Hyper-Heuristics

This is an emerging direction in modern search technology.
It is termed as Hyper-heuristic as it aims to raise the level of
granularity at which optimization system can operate. They are
broadly concerned with intelligently choosing the right
heuristic or algorithm in given situation. A hyper-heuristic
works at a higher level when compared with the typical
application of meta-heuristics to optimize problems, i-e; a

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

36 | P a g e
www.ijacsa.thesai.org

hyper-heuristics could be taken as a heuristic or meta-heuristic
which operates on other low level heuristics or meta-heuristics
[4].

III. LIN-KERNIGHAN HEURISTIC AND SERIAL EXECUTION OF

LKH-2 SOFTWARE

The Lin–Kernighan algorithm belongs to the class of so-
called local search algorithms [5, 7, 9, 10]. A local search
algorithm starts at some location in the search space and
subsequently moves from the present location to a neighboring
location. LKH has produced optimal solutions for all solved
problems including an 85,900-city instance in TSPLIB.
Furthermore, this algorithm has improved the best known
solutions for a series of large-scale instances with unknown
optima, like „World TSP‟ of 1,904,711-city instance [5, 13].

The algorithm is specified in exchanges (or moves) that
can convert one candidate solution into another. Given a
feasible TSP tour, the algorithm repeatedly performs
exchanges that reduce the length of the current tour, until a
tour is reached for which no exchange yields an improvement.
This process may be repeated many times from initial tours
generated in some randomized way.

The Lin–Kernighan algorithm (LK) performs so-called k-
opt moves on tours. A k-opt move changes a tour by replacing
k edges from the tour by k edges in such a way that a shorter
tour is achieved. Let T be the current tour. At each iteration
step the algorithm attempts to find two sets of edges, X = {x1, .
. . , xk } and Y = {y1, . . . , yk }, such that, if the edges of X are
deleted from T and replaced by the edges of Y , the result is a
better tour. The edges of X are called out-edges. The edges of
Y are called in-edges. The detail of LKH-2 software can be
found in [7].

A. LKH-2 Software

LKH-2 software provides an effective serial
implementation of the Lin-Kernighan heuristic Algorithm with
General k-opt Sub-moves for solving the traveling salesman
problem. It is written in visual C++. Computational
experiments have shown that LKH-2 software is highly
effective for solving TSP. This software has produced optimal
solutions for all solved problems we have been able to obtain
including a 85,900-city instance available in the TSPLIB.
Furthermore, it has improved the best known solutions for a
series of large-scale instances with unknown optima, among
these a 1,904,711-city instance commonly known as World
TSP. Similarly LKH-2- software also currently holds the
record for all instances with unknown optima provided in the
DIMACS TSP Challenge which provides many benchmark
instances range from 1,000 to 10,000,000 cities. Its six
versions 2.0.0, 2.0.1, 2.0.2, 2.0.2, 2.0.3, 2.0.4 and 2.0.5 have
been released. For our study we have used its latest 2.0.5
version released in November 2010. This software can be
downloaded free from [13].

B. Execution of LKH-2 software

For converting the serial LKH-2 software into parallel and
make it suitable for multi-core processors the LKH heuristics
and its LKH-2 software execution were analyzed in detail. On
analyzing it is found that LKH-2 Software is written using

functional programming. Its complex computation is divided
into ninety eight functions which can be called from the main
program accordingly. This software also takes help of thirteen
header files. On further exploration it was found that working
of LKH-2 software can be broken into seven basic stages
which may help in its parallelization. All the seven stages are
discussed below. A flow chart representing the stages of LKH-
2 software on the basis of the stages is shown in Fig. 1.

1) Stage 1: Read parameter file: This is the first step in

LKH-2 software. A function is calleld to open the parameter

file and to read the specified problem parameters in the file.

2) Stage 2: Read Problem file: In the next step, the

specifed problem file is read. In the TSP library all the

instances and their releated infromation is placed in an

indivuall files using a standard format. This file is known as

the problem file. The ''ReadProblem function'' in LKH-2

software reads the problem data in TSPLIB format for further

processing.

3) Stage 3: Partitioning of the problem: After reading the

problem, the large problem may be divided into number of

sub-problems as defined in the parameter file using the

parameter „sub-problem size'. If sub-problem size is zero than

no partitioning of the problem is done. Else by default the sub-

problems are determined by sub-dividing the tour into

segments of equal size. However LKH-2 software also

provides five other different techniques to partition the

problem. These include Delaunay Partitioning, Karp

Partitioning, K-Means Partitioning, Rohe Partitioning and

MOORE or SIERPINSKI Partitioning.

4) Stage 4: Initialization of data structures and statistics

variable: After reading the probelm and its partitioning, if

done, the releated data structures and statistics variables are

initialized. The major statistical variables include minimum

and maximum trials, total number and number of success

trails, minimum and maximum cost, total Cost, minimum and

maximum Time, total Time.

5) Stage 5: Generation of Initial Candidate Set: The

''CreateCandidateSet'' function and its sub-functions

determines a set of incident candidate edges for each node. If

the penalties (the Pi-values in the paramenter file) is not

defined, the ''Ascent function'' is called to determine a lower

bound on the optimal tour using sub-gradient optimization.

Else the penalties are read from the file, and the lower bound

is computed from a minimum 1-tree. The function

''GenerateCandidates'' is called to compute the Alpha-values

and a set of incident candidate edges is associated to each

node.

6) Stage 6: Find Optimal Tour : This is main processing

step where the optimal tour is found. After the creation of

candidate set, the ''FindTour” function' is called 'for

predetermined number of times (Runs). FindTour performs a

number of trials, where in each trial it attempts to improve a

chosen initial tour using the modified Lin-Kernighan edge

exchange heuristics. If tour found is better than the existing

tour, the tour and time are recorded.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

37 | P a g e
www.ijacsa.thesai.org

7) Stage 7: Update Statistics: This step is called in two

levels. Firstly this step is processed after every individual call

for "FindTour” function to update the respective statistical

variables. Finally it is processed at the end of total runs of

''FindTour” function' to calculate and report the average

statistics.

Figure1. Stages in Original serial LKH-2 software

IV. SPC3 PM (SERIAL, PARALLEL, AND CONCURRENT CORE

TO CORE PROGRAMMING MODEL)

SPC3 PM, (Serial, Parallel, Concurrent Core to Core
Programming Model), is a serial-like task-oriented multi-
threaded parallel programming model for multi-core
processors, that enables developers to easily write a new
parallel code or convert an existing code written for a single
processor. The programmer can scale it for use with specified
number of cores. And ensure efficient task load balancing
among the cores [1].

SPC3 PM is motivated with an understanding that existing
general-purpose languages do not provide adequate support for
parallel programming. Existing parallel languages are largely

targeted to scientific applications. They do not provide
adequate support for general purpose multi-core programming
whereas SPC3 PM is developed to equip a common
programmer with multi-core programming tool for scientific
and general purpose computing. It provides a set of rules for
algorithm decomposition and a library of primitives that
exploit parallelism and concurrency on multi-core processors.
SPC3 PM helps to create applications that reap the benefits of
processors having multiple cores as they become available.

SPC3 PM provides thread parallelism without the
programmers requiring having a detailed knowledge of
platform details and threading mechanisms for performance
and scalability. It helps programmer to control multi-core
processor performance without being a threading expert. To
use the library a programmer specifies tasks instead of threads
and lets the library map those tasks onto threads and threads
onto cores in an efficient manner. As a result, the programmer
is able to specify parallelism and concurrency far more
conveniently and with better results than using raw threads..
The ability to use SPC3 PM on virtually any processor or any
operating system with any C++ compiler also makes it very
flexible.

SPC3 PM has many unique features that distinguish it with
all other existing parallel programming models. It supports
both data and functional parallel programming. Additionally, it
supports nested parallelism, so one can easily build larger
parallel components from smaller parallel components. A
program written with SPC3 PM may be executed in serial,
parallel and concurrent fashion. Besides, it also provides
processor core interaction to the programmer. Using this
feature a programmer may assign any task or a number of
tasks to any of the cores or set of cores.

A. Key Features

The key features of SPC3 are summarized below.

 SPC3 is a new shared programming model developed

for multi-core processors.

 SPC3 PM works in two steps: defines the tasks in an

application algorithm and then arranges these tasks on

cores for execution in a specified fashion.

 It provides Task based Thread-level parallel

processing.

 It helps to exploit all the three programming execution

approaches, namely, Serial, Parallel and Concurrent.

 It provides a direct access to a core or cores for

maximum utilization of processor.

 It supports major decomposition techniques like Data,

Functional and Recursive.

 It is easy to program as it follows C/C++ structure.

 It can be used with other shared memory programming

model like OpenMP, TBB etc.

 It is scalable and portable.

 Object oriented approach

B. Programming with SPC3 PM

SPC3 PM provides a higher-level, shared memory, task-
based thread parallelism without knowing the platform details

Read Parameter File

Read Problem File

Decompose

Problem into

Sub-problems

Partitioning of the Problem into Sub-

problems as defined in Parameter File

Initialization of Data Structures

Initialization of Statistics Variable

Generation of Initial Candidate Set

Update Statistics Variable

If Run => 0 Report Minimum, Maximum

and Average Statistics

Find Optimal Tour

YES

NO

YES NO

Start

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

38 | P a g e
www.ijacsa.thesai.org

and threading mechanisms. This library can be used in simple
C / C++ program having tasks defined as per SPC3 PM Task
Decomposition rules. To use the library, you specify tasks, not
threads, and let the library map tasks onto threads in an
efficient manner. The result is that SPC3 PM enables you to
specify parallelism and concurrency far more conveniently,
and with better results, than using raw threads.

Programming with SPC3 is based on two steps. First
describing the tasks as it specified rules and then programming
it using SPC3 PM Library.

1) Steps involved in the development of an application

using SPC3PM

 The user determines that his application can be
programmed to take advantage of multi-core

processors.

 The problem is decomposed by the user following the

SPC3 PM 'Task Decomposition Rules'.

 Each Task is coded in C /C++ as an independent unit

to be executed independently and simultaneously by

each core.

 Coding of Main Program using SPC3 PM Library to

allow the user to run the program in serial, parallel or

concurrent mode.

 Compilation of code using any standard C/C++
compiler.

 Execution of Program on a multi-core processor

2) Rules for Task Decomposition
The user can decompose the application / problem on the

basis of following rules.

 The user should be able to breakdown the problem in

various parts to determine if they can exploit

Functional, Data or Recursive decomposition.

 Identify the loops for the loop parallelism and may be

defined as Tasks.

 Identify independent operations that can be executed

in parallel and may be coded as independent Tasks.

 Identify the large data sets on which single set of

computations have to be performed. Target these large
data sets as Tasks.

 Tasks should be named as Task1, Task2,….. TaskN. If

a Task returns a value it should be named with suffix

„R‟ like TaskR1, TaskR2…. TaskRN.

 There is no limit on the number of Tasks.

 Each Task should be coded using either

C/C++/VC++/C# as an independent function.

 A Task may or may not return the value. A Task

should only intake and return structure pointer as a

parameter. Initialize all the shared or private

parameters in the structure specific to a Task. This
structure may be shared or private.

 Arrange the tasks using SPC3 PM Library in the main

program according to the program flow.

3) Program Structure

C. SPC3 PM Library

SPC3 PM provides a set of specified rules to decompose
the program into tasks and a library to introduce parallelism in
the program written using c/ c++. The library provides three
basic functions.

 Serial

 Parallel

 Concurrent

1) Serial: This function is used to specify a Task that

should be executed serially. When a Task is executed with in

this function, a thread is created to execute the associated task

in sequence. The thread is scheduled on the available cores

either by operating system or as specified by the programmer.

This function has three variants. Serial (Task i) {Basic}, Serial

(Task i, core) {for core specification} and *p Serial (Task i,

core, *p) {for managing the arguments with core

specification}

2) Parallel: This function is used to specify a Task that

should be executed in parallel. When a Task is executed with

in this function, a team of threads is created to execute the

associated task in parallel and has an option to distribute the

work of the Task among the threads in a team. These threads

are scheduled on the available cores either by operating system

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

39 | P a g e
www.ijacsa.thesai.org

or as specified by the programmer. At the end of a parallel

function, there is an implied barrier that forces all threads to

wait until the work inside the region has been completed. Only

the initial thread continues execution after the end of the

parallel function. The thread that starts the parallel construct

becomes the master of the new team. Each thread in the team

is assigned a unique thread id to identify it. They range from

zero (for the master thread) up to one less than the number of

threads within the team. This function has also four variants.

Parallel (Task i) {Basic}, Parallel (Taski ,num-threads) {for

defining max parallel threads}, Parallel (Task i, core list) {for

core specification} and *p parallel (Task i, core, *p) {for

managing the arguments with core specification}

3) Concurrent: This function is used to specify the number

of independent tasks that should be executed in concurrent

fashion on available cores. These may be same tasks with

different data set or different tasks. When the Tasks are

executed defined in this function, a set of threads equal or

greater to the number of tasks defined in concurrent function is

created such that each task is associated with a thread or

threads. These threads are scheduled on the available cores

either by operating system or specified by the programmer. in

other words , this function is an extension and fusion of serial

and parallel functions. All the independent tasks defined in

concurrent functions are executed in parallel where as each

thread is being executed either serially or in parallel. This

function has also three variants. Concurrent (Task i, Taskj,

....Task N) {Basic}, Concurrent (Task i, core , Task j , core,

……) {for core specification} and Concurrent (Task i, core ,

*p, Task j , core, *p ……) {for managing the arguments with

core specification}.

V. PARALLELIZATION OF LKH-2 SOFTWARE USING SPC3

PM

LKH-2 software is a serial code and cannot make most of
multi-cores unless modified accordingly. This LKH-2 software
code can be made suitable for multi-core processors by
introducing parallelism and concurrency in it. Here it is

 done using SPC3 PM.

SPC3 PM, Serial Parallel and Concurrent Core to Core
programming Model provides an environment to decompose
the application into tasks using its task decomposition rules
and then execute these tasks in serial, parallel and concurrent
fashion. As LKH-2 software is written in function style so we
have to only restructure the some part of the code to make it
suitable for SPC3 PM.

Working of LKH-2 software can be decomposed into
seven stages as discussed in section III. Out of seven, the most
important and computational intensive stages are its sixth
stage that is finding of the optimal tour using LKH-2
algorithm and seventh stage, that is updating of the statistics
accordingly. The other related time consuming step is to
execute this stage multiple times as defined in the parameter
file (runs). The rest of the stages do not demand much of time
and computations and can be executed in serially.

LKH-2 software is parallelized by converting its tour
finding and related routines (sixth stage) into tasks according
to the SPC3 PM Task decomposition rules and executing them
in parallel using parallel function of SPC3 PM Library. To
execute this stage multiple times as defined in the parameter
file (runs), concurrent function of SPC3 PM is used. This
concurrent execution enables to execute this stage in parallel
on the available cores. This approach of decomposition and
execution of LKH-2 software makes it suitable for parallel
execution on multi-core processors.

This two level parallel and concurrent execution of stages
also makes this LKH-2 software scalable with respect to
multiple-cores processors. The available cores are divided into
sets equal to number of runs of stage six. Each set execute the
stage concurrently and cores in each set execute the single task
of finding the optimal tour in parallel. Number of sets and
number of cores in each set is calculated using the following
equations respectively.

 (1)

 (2)

For example, on a 24 cores processor with 8 runs of
finding the tour task, the total 8 sets with 3 cores each are
created. Each individual execution of the task is performed on
each set concurrently. Whereas three cores in each set is
responsible to execute the task with in a set in parallel.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

40 | P a g e
www.ijacsa.thesai.org

FIGURE2. Stages in parallelized LKH-2 software using SPC
3
 PM

VI. PERFORMANCE EVOLUTION

This section discusses the performance comparison of the
parallelized LKH-2 software using SPC

3
 PM and the original

LKH-2 software version 2.0.5. on various instances of TSP
library. The LKH-2 is parallelized using SPC3 PM Task
decomposition rules and SPC3 PM Library to make this serial
code suitable for multi-core processors.

A. Experimental Setup

For our study we have selected standard medium size and
large size TSP instances of TSBLIB [5, 14, 15]. All the
computational tests reported in this section, for both original
and parallelized LKH-2 software code with SPC3 PM, run on
the TSPLIB instances, have been made using the default
values of parameters defined in LKH-2 software parameter
file. These default values have proven to be adequate in many
applications [5]. Each TSP instances for both original and
parallelized LKH-2 software code with SPC3 PM, is given ten
runs for calculating the optimal tour and for each respective
TSP instance, three different execution times, i-e, the
minimum execution time out of ten runs, average and total
execution time required for all ten runs are then recoded.

For the execution of the algorithms, the latest Intel server
1500ALU with dual six core hyper threaded Intel Xeon 5670
processor is used. Thus total number of parallel threads that
can be executed is 2*2*6=24. Operating systems used is 64 bit
windows 2008 server.

B. Result Analysis and Observations

Table1 shows the minimum, average and total execution
time for original serial LKH-2 software for 10 runs of each

medium size TSP instances.

TABLE1. Minimum, Average and Total execution time for original serial

LKH-2 software for medium size TSP instances (10 runs each)

TSP

Instance

Optimal

Value

Average

Root Gap

Min.

Time

(Sec)

Average

Time

(Sec)

Total

Time

(Sec)

pr1002 259045 0.00% 1 1 12

si1032 92650 0.00% 5 7 74

u1060 224094 0.01% 54 103 1026

vm1084 239297 0.02% 30 42 420

pcb1173 56892 0.00% 0 3 30

d1291 50801 0.00% 3 4 43

rl1304 252948 0.16% 14 14 140

rl1323 270199 0.02% 2 12 117

nrw1379 56638 0.01% 14 16 158

fl1400 20127 0.18% 3663 3906 39061

u1432 152970 0.00% 3 3 33

fl1577 22204 0.24% 1218 2189 21888

d1655 62128 0.00% 2 4 39

vm1748 336556 0.00% 20 22 220

u1817 57201 0.09% 68 119 1188

rl1889 316536 0.00% 65 135 1348

d2103 79952 0.63% 146 162 1624

gr2121 2707 0.00% 25 30 303

u2319 234256 0.00% 1 1 10

pr2392 378032 0.00% 1 1 10

Table 2 shows the minimum, average and total time for the
parallelized LKH-2 software using SPC3 PM for 10 runs of
each medium size TSP instances.

Read Parameter File

Read Problem File

Decomp

ose

Problem

into Sub-

problems

Partitioning of the Problem

into Sub-problems as defined

in Parameter File

Initialization of Data

Structures

Initialization of Statistics

Variable

Generation of Initial

Candidate Set

Update

Statistics

Variable

Report Minimum, Maximum

and Average Statistics

Find Optimal

Tour in

Parallel

Find Optimal

Tour in

Parallel

Find Optimal

Tour in

Parallel

Find Optimal

Tour in

Parallel

Find Optimal

Tour in

Parallel

Update

Statistics

Variable

Update

Statistics

Variable

Update

Statistics

Variable

Update

Statistics

Variable

YES

NO

Concurrent

Execution on

Multi-cores

Concurrent

Execution on

Multi-cores

Start

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

41 | P a g e
www.ijacsa.thesai.org

TABLE2: Minimum, Average and Total time for Parallelized LKH-2 software

using SPC3 PM for each medium size TSP instances (10 runs each)

TSP

Instance

Optimal

Value

Average

Root Gap

Min.

Time

(Sec)

Average

Time

(Sec)

Total

Time

(Sec)

pr1002 259045 0.00% 0 1 9

si1032 92650 0.00% 2 5 51

u1060 224094 0.01% 34 67 673

vm1084 239297 0.02% 15 27 271

pcb1173 56892 0.00% 0 2 20

d1291 50801 0.00% 2 3 31

rl1304 252948 0.16% 8 10 98

rl1323 270199 0.02% 2 8 77

nrw1379 56638 0.01% 8 11 112

fl1400 20127 0.18% 1883 2370 23695

u1432 152970 0.00% 2 2 22

fl1577 22204 0.24% 809 1422 14222

d1655 62128 0.00% 2 3 28

vm1748 336556 0.00% 11 16 159

u1817 57201 0.09% 44 81 811

rl1889 316536 0.00% 43 100 1001

d2103 79952 0.63% 106 137 1368

gr2121 2707 0.00% 15 22 219

u2319 234256 0.00% 1 1 7

pr2392 378032 0.00% 1 1 7

Following Fig. 3 based on tables 1 and 2, shows the
comparison of minimum time between original serial LKH-2
software and parallelized LKH-2 software using SPC3 PM for
the medium size TSP instances. Similarly, Fig. 4 and Fig. 5
show the comparison of average and total time between
original serial LKH-2 software and parallelized LKH-2
software using SPC3 PM for 10 runs of each medium size TSP
instances

From Fig. 3, for minimum execution time, it may clearly
be observed that our parallelized LKH-2 software using SPC3

PM requires much lesser time that of the original LKH-2
software requires. It is so because the main function of finding
the optimal tour using LKH algorithm is being executed in
parallel on the available cores as defined in (2). In this case, 10
runs of each instance are executed concurrently on 20 cores.
That is each run has a set of nearly 2 cores for its execution in
parallel. Speedup obtained in our case ranges from 1.5 to 1.7,
which is where much near to the ideal speedup which should
be 2 in this case.

Similarly, from Fig 4, the same observation can be made
that the average execution time for parallelized LKH-2
software using SPC3 PM requires much lesser time that of the
original LKH-2 software requires. It is so, because all the
required runs of an instance are running in parallel on their
respective allocated set of 2 cores.

 For the total execution time required for 10 runs of each
instances, the parallelized LKH-2 software code shows much
greater performance gain in comparison to original LKH-2
code. This is because of the concurrent execution of all
required runs on the available cores. In this case as defined by
(1), total 10 sets are created. Each set is responsible to execute
a run of a given instance. Thus all the runs are executed
concurrently on 24 core machine making most of the multi-
core processor and reducing the total execution time
remarkably. Whereas in serial execution of original LKH-2
software, next run of a TSP instance is executed only after the
completion of the first run.

Table 3. shows the minimum, average and total time for
original serial LKH-2 software for each large size TSP
instances. Similarly, table 4 shows the minimum, average and
total time for the parallelized LKH-2 software using SPC3 PM
for each large size TSP instances. All the computational tests
reported here are taken with default parameter file and having
ten runs for each TSP instance.

FIGURE 3. Comparison of minimum time between original serial LKH-2 software and parallelized LKH-2 software using SPC

3
 PM for the medium size TSP

instances calculated for 10 runs

0

20

40

60

80

100

120

140

160

T
im

e
in

 S
ec

TSPLIB Instances

Minimum Time

Orignal Serial LKH-2

Parallelized LKH-2

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

42 | P a g e
www.ijacsa.thesai.org

FIGURE 4. Comparison of average time between original serial LKH-2 software and parallelized LKH-2 software using SPC

3
 PM for the medium size tsp

instances calculated for 10 runs

FIGURE 5. Comparison of total time between original serial LKH-2 software and parallelized LKH-2 software using SPC
3
 PM for the medium size TSP instances

calculated for 10 runs

TABLE 3. Minimum, Average and Total execution time for original serial

LKH-2 software for each large size TSP instances (10 runs each)

TSP

Instance
Optimal Value

Avg.

Root

Gap

Min.

Time

(Sec)

Avg.

Time

(Sec)

Total

Time

(Sec)

pcb3038 137694 0.00% 430 499 4993

fl3795 [28723,28772] 0.31% 5114 6473 64725

fnl4461 182566 0.09% 2460 2759 27594

rl5915 [565040,565530] 0.37% 3220 3329 33286

pla7397 23260728 0.00% 1280 1544 15440

TABLE 4. Minimum, Average and Total time for Parallelized LKH-2

software using SPC
3
 PM for each large size TSP instances (10 runs each)

TSP

Instance
Optimal Value

Avg.

Root

Gap

Min.

Time

(Sec)

Avg.

Time

(Sec)

Total

Time

(Sec)

pcb3038 137694 0.00% 279 365 540

fl3795 [28723,28772] 0.31% 3299 4474 7109

fnl4461 182566 0.09% 1507 1873 2675

rl5915 [565040,565530] 0.37% 1849 2420 3201

pla7397 23260728 0.00% 762 1107 1525

Following Fig. 6 based on tables 3 and 4 shows the
comparison of minimum time between original serial LKH-2
software and parallelized LKH-2 software using SPC3 PM for
the large size TSP instances. Similarly, Fig. 7 and Fig. 8 show
the comparison of average and total time between original
serial LKH-2 software and parallelized LKH-2 software using
SPC3 PM for the large size TSP instances.

FIGURE 6. Comparison of minimum execution time between original serial

lkh-2 software and parallelized LKH-2 software using SPC
3

PM for the large
size TSP instance calculated for 10 runs

0

20

40

60

80

100

120

140

160

180

T
im

e
in

 S
ec

TSPLIB Instances

Average Time

Orignal Serial LKH-2

Parallelized LKH-2

0

200

400

600

800

1000

1200

1400

1600

1800

T
im

e
in

 S
ec

TSPLIB Instances

Total TimeSerial Orignal LKH-2
Parallelized LKH-2

0

1000

2000

3000

4000

5000

6000

pcb3038 fl3795 fnl4461 rl5915 pla7397

Ti
m

e
in

 S
ec

TSPLIB Instances

Minimum Time
Orignal Serial LKH-2

Parallelized LKH-2

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 2, No. 7, 2011

43 | P a g e
www.ijacsa.thesai.org

FIGURE 7. Comparison of average execution time between original serial

lkh-2 software and parallelized LKH-2 software using SPC
3

PM for the large

size TSP instance calculated for 10 runs

FIGURE 8. Comparison of total execution time between original serial lkh-2

software and parallelized LKH-2 software using SPC
3
PM for the large size

TSP instance calculated for 10 runs

From Fig. 6, 7 and 8, same observation can be made for
large size TSP instance as that of the medium size TSP
instance. The minimum, average and total execution time for
parallelized LKH-2 software using SPC3 PM is found lesser
than that of the original LKH-2 software requires.

VII. CONCLUSION AND FUTURE WORK

The results from this study show that the SPC3 PM (Serial,
Parallel, and Concurrent Core to Core Programming Model)
provides a simpler, effective and scalable way to parallelize a
given code and make it suitable for multi-core processors.
With the concurrent and parallel function of SPC3 PM, the
programmer can transform a given serial code into parallel and
concurrent executable form for making most of the multi-core
processors.

The Lin-Kernighan Heuristic (LKH-2) for Solving
Travelling Salesman Problem which is generally considered to
be one of the most effective methods for generating optimal or
near-optimal solutions for the symmetric traveling salesman
problem is made further effective and less time consuming by
introducing parallelism and concurrency in the algorithm with
the help of SPC3 PM. Besides, the new parallel and concurrent
implementation of the algorithm founds much more scalable
and suitable for multi-core processors.

This SPC3 PM will be further worked out for introduction
of some more parallel and concurrent functionality and
synchronizing tools and will be applied to other standard and
classical problems to meet the software challenges of multi-
core era.

REFERENCES

[1] M. A Ismail, S.H. Mirza, T. Altaf, “Concurrent matrix multiplication on

multi-core processors”, Intl. J. of Comp. Sc. & Security, vol. 5(4), 2011,
pp 208-220.

[2] N. Vachharajani, Y. Zhang and T. Jablin, "Revisiting the sequential

programming model for the multicore era", IEEE MICRO, Jan - Feb
2008.

[3] M. D. McCool, "Scalable programming models for massively multicore

processors", Proceedings of the IEEE, vol. 96(5), 2008.

[4] F. Glover, G.A. Kochenberger, Handbook of Metaheuristics, Kluwer‟s
international series, 2003, pp. 475-514.

[5] D. L. Applegate, R. Bixby, V. Chvatal, W. J. Cook, The Travelling

Salesman Problem, Princeton University Press, 2006, pp. 29, 59-78, 103,
425-469, 489-524.

[6] E. Alba, Parallel Metaheuristics a new class of algorithms, Willey, 2006.

[7] K. Helsgaun, “General k-opt submoves for the Lin–Kernighan TSP
heuristic”, Math. Prog. Comp., vol. 1, pp. 119–163, 2009.

[8] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.):

The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization. Wiley, New York , 1985.

[9] S. Lin, , B. W. Kernighan, “An effective heuristic algorithm for the

traveling-salesman problem”. Oper.Res. vol. 21, pp. 498–516, 1973.

[10] K. Helsgaun, “An effective implementation of the Lin–Kernighan
traveling salesman heuristic” , EJOR 12, pp. 106–130, 2000.

[11] H.H. Hoos, T. Stützle, Stochastic Local Search: Foundations and

Applications. Morgan Kaufmann, Menlo Park , 2004.

[12] D. S. Johnson, “Local optimization and the traveling salesman problem”,
LNCS, vol. 442, pp. 446–461, 1990.

[13] http://www.akira.ruc.dk/~keld/research/LKH/

[14] http://www.tsp.gatech.edu/data/index.html

[15] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

AUTHORS PROFILE

Muhammad Ali Ismail received his B.E degree in Computer and Information

Systems from NED University of Engineering and Technology, Pakistan in

2004. He did his M.Engg in Computer Engineering with specialization in

Computer Systems and Design from the same university in 2007. Now he is

pursuing his PhD research in the field of Multi-core Processors. His areas of

interest include serial, parallel and distributed computer architectures, Shared

memory, distributed memory and GPU programming, including generic and

specific models and algorithms. He has received first prize Gold medal in all

Pakistan competition for his cluster design. He is a member of IEEE (USA),

IET (UK) & PEC.

Prof. Dr. Shahid Hafeez Mirza has 38 years of experience in teaching and

research. He received his bachelor degree in Electrical Engineering from NED

University of Engineering and Technology, Pakistan. He did his MS from

USA. From UK he pursued his degree of doctorate. He has served department

of Computer and Information System Engineering of NED University as a

Chairman. He also remained the DEAN of faculty of Electrical and Computer

Engineering. Now he is Senior Research fellow in the same university. His

fields of interest include processor design, computer architecture and parallel

processing. He is a member IEEE (USA) and member IET (UK).

Prof. Dr. Talat Altaf has 29 years of experience in teaching and research. He

has B.Sc. Engineering (Honours) in Electrical Engineering and M.Sc.

Engineering (Instrumentation) degrees from Aligarh Muslim University,

Aligarh in 1976 and 1983 respectively. He pursued his Ph.D. degree from the

University of Bradford, U.K. during 1990 till 1994. He has served the

Department of Electrical Engineering of NED University as a Chairman

during 1997 till 2007. He is presently the Dean of the Faculty of Electrical and

Computer Engineering. His fields of interests are in the areas of Current Mode

Circuits/Filters, Digital Signal Processing, Parallel Processing, Energy

Conversion and Distributed Generation. He is a member of IEEE (USA),

Circuits and Systems Society and Instrumentation and Measurement Society.

He is also member of IET (U.K.), PEC, and Illumination Society of Pakistan.

0

1000

2000

3000

4000

5000

6000

7000

8000

pcb3038 fl3795 fnl4461 rl5915 pla7397

Ti
m

e
in

 S
ec

TSPLIB Instances

Average Time Orignal Serial LKH-2
Parallelized LKH-2

0

10000

20000

30000

40000

50000

60000

70000

80000

pcb3038 fl3795 fnl4461 rl5915 pla7397

Ti
m

e
in

 S
ec

TSPLIB Instances

Total Time Orignal Serial LKH-2
Parallelized LKH-2

